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Abstract
Neural architecture search, which aims to auto-
matically search for architectures (e.g., convolu-
tion, max pooling) of neural networks that max-
imize validation performance, has achieved re-
markable progress recently. In many application
scenarios, several parties would like to collabora-
tively search for a shared neural architecture by
leveraging data from all parties. However, due
to privacy concerns, no party wants its data to be
seen by other parties. To address this problem,
we propose differentially-private federated neural
architecture search (DP-FNAS), where different
parties collectively search for a differentiable ar-
chitecture by privately exchanging gradients of
architecture variables. We provide theoretical
guarantees of DP-FNAS in achieving differen-
tial privacy. Experiments show that DP-FNAS
can search highly-performant neural architectures
while protecting the privacy of individual parties.

1. Introduction
In many application scenarios, the data owners prefer to
train machine learning (ML) models using their data that
contains sensitive information, but the size of the data is
limited. Many ML methods, especially deep learning meth-
ods, are data hungry and having more training data usually
improves performance. One way to have more training data
is to combine data of the same kind from multiple parties
to collectively train a model. However, since each of these
datasets contains private information, they can’t be shared
across parties. Federated learning (Konečnỳ et al., 2016;
McMahan et al., 2016) is developed to address this prob-
lem. Multiple parties collectively train a shared model in a
decentralized way by exchanging sufficient statistics (e.g.,
gradients) without exposing the data of one party to another.

While preserving privacy by avoiding sharing data among
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different parties, federated learning (FL) incurs difficulty
for model design. When ML experts design the model
architecture, they need to thoroughly analyze the properties
of data to obtain insights that are crucial in determining
which architecture to use. In an FL setting, an expert from
one party can only see the data from this party and is not
able to analyze the data from other parties. Without having a
global picture of all data from different parties, ML experts
are not well-equipped to design a model architecture that
is optimal for fulfilling the predictive tasks in all parties.
To address this problem, we resort to automated neural
architecture search (NAS) (Zoph & Le, 2016; Liu et al.,
2018; Real et al., 2019) by designing search algorithms to
automatically find out the optimal architecture that yields
the best performance on the validation datasets.

To this end, we propose federated NAS (FNAS), where mul-
tiple parties collaboratively search for an optimal neural
architecture without exchanging sensitive data with each
other for the sake of preserving privacy. For computational
efficiency, we adopt a differentiable search strategy (Liu
et al., 2018). The search space is overparameterized by a
large set of candidate operations (e.g., convolution, max
pooling) applied to intermediate representations (e.g., fea-
ture maps in CNN). Each operation is associated with an
architecture variable A indicating how important this opera-
tion is. The prediction loss is a continuous function w.r.t A
as well as the weight parameters W within individual oper-
ations. A and W are learned by minimizing the validation
loss using a stochastic gradient descent (SGD) algorithm.
After learning, operations with top-K architecture-variables
are retained to form the final architecture.

In FNAS, a server maintains the global state of A and W .
Each party has a local copy ofA andW . In each iteration of
the search algorithm, each party calculates gradient updates
ofA andW based on its local data and local parameter copy,
then sends the gradients to the server. The server aggregates
the gradients received from different parties, performs a
SGD update of the global state of A and W , and sends the
updated parameters back to each party, which replaces its
local copy with the newly received global parameters. This
procedure iterates until convergence.

Avoiding exposing data is not sufficient for privacy preserva-
tion. Several studies (Bhowmick et al., 2018; Carlini et al.,
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2018; Fredrikson et al., 2015) have shown that intermediates
results such as gradients can reveal private information. To
address this problem, we study differentially-private FNAS
(DP-FNAS), which adds random noise to the gradients cal-
culated by each party to retain differential privacy (Dwork
et al., 2006). We provide theoretical guarantees of DP-
FNAS in privacy preservation. Experiments exhibit that
while protecting the privacy of individual parties, the archi-
tectures searched by DP-FNAS can achieve high accuracy
that is comparable to those searched by single-party NAS.

The major contributions of this paper are as follows:

• We propose differentially-private federated learning for
neural architecture search (DP-FNAS), enabling multiple
parties to collaboratively search for a highly-performant
neural architecture without sacrificing privacy.

• We propose a DP-FNAS algorithm which uses a param-
eter server framework and a gradient-based method to
perform federated search of neural architectures. The
gradient is obfuscated with random noise to achieve dif-
ferential privacy.

• We provide a theoretical guarantee of our algorithm in
terms of privacy preservation.

• We perform experiments which show that DP-FNAS can
search highly-performant neural architectures while pro-
tecting the privacy of individual parties.

The rest of the paper is organized as follows. Section 2, 3
and 4 present the method, privacy analysis and experiments.
Section 5 reviews related works and Section 6 concludes.

2. Methods
We assume there are K parties aiming to solve the same
predictive task, e.g., predicting whether a patient has pneu-
monia based on his or her chest X-ray image. Each party
k has a labeled dataset Dk containing pairs of input data
example and its label. For instance, the data example could
be a chest X-ray and the label is about whether the patient
has pneumonia. The datasets contain sensitive information
where privacy needs to be strongly protected, restricting
data sharing across parties. It is preferable to leverage all
datasets from different parties to collectively train a model,
which presumably has better predictive performance than
the individual models belonging to different parties, each
trained on a party-specific dataset. How can one achieve
this goal without sharing data between parties?

Federated learning (FL) (Konečnỳ et al., 2016; McMahan
et al., 2016) is a learning paradigm designed to address this
challenge. In FL, different parties collectively train a model
by exchanging sufficient statistics (e.g., gradient) calculated
from their datasets, instead of exchanging the original data

directly. There is a server maintaining the weight param-
eters of the global model to be trained. Each party has a
local copy of the model. In each iteration of the training
algorithm, each party k uses its data Dk and the local model
Mk to calculate a gradient Gk of the predictive loss func-
tion L(Mk, Dk) with respect to Mk. Then it sends Gk to
the server. The server aggregates the gradients {Gk}Kk=1

received from different workers and performs a gradient de-
scent update of the global model: M ←M−η 1

K

∑M
k=1Gk,

where η is the learning rate. Then it sends the updated
global model back to each party, which replaces its local
model with the global one. This procedure iterates until
convergence. In this process, the dataset of each party is not
exposed to any other party or the server. Hence its privacy
can be protected to some extent (later, we will discuss a
stronger way of protecting privacy).

For ML experts, to design an effective model architecture,
the experts need to thoroughly analyze the properties of
the data. In an FL setting (facilitated with more data with
privacy preservation), the expert from each party can only
see the data from this party, not that from others. Without
a global picture of all datasets, these experts are not well-
equipped to design an architecture that is optimal for the
tasks in all parties.

To address this problem, we resort to automatic neural ar-
chitecture search (NAS) (Zoph & Le, 2016; Liu et al., 2018;
Real et al., 2019). Given a predictive task and labeled data,
NAS aims to automatically search for the optimal neural ar-
chitecture that can best fulfill the targeted task. The problem
can be formulated in the following way:

minA L(D(val), A,W ∗(A))
s.t. W ∗(A) = argminW L(D(tr), A,W )

(1)

where D(tr) and D(val) are the training data and validation
data respectively. A denotes the neural architecture and W
denotes the weights of the model whose architecture is A.
Given a configurationA of the architecture, we train it on the
training data and obtain the best weights W ∗(A). Then we
measure the loss L(D(val), A,W ∗(A)) of the trained model
on the validation set. The goal of an NAS algorithm is to
identify the best A that yields the lowest validation loss. Ex-
isting search algorithms are mostly based on reinforcement
learning (Zoph & Le, 2016), evolutionary algorithm (Real
et al., 2019), and differentiable NAS (Liu et al., 2018). In
this work, we focus on differentiable NAS since it is com-
putationally efficient.

To this end, we introduce federated neural architecture
search (FNAS), which aims to leverage the datasets from
different parties to collectively learn a neural architecture
that can optimally perform the predictive task, without shar-
ing privacy-sensitive data between these parties. The FNAS
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problem can be formulated as:

minA
∑K
k=1 L(D(val)

k , A,W ∗(A))

s.t. W ∗(A) = argminW
∑K
k=1 L(D(tr)

k , A,W )
(2)

where D(tr)
k and D(val)

k denote the training and validation
dataset belonging to the party k respectively. A naive al-
gorithm for FNAS performs the following steps iteratively:
given a configuration A of the architecture, use the gradient-
based FL method to learn the optimal weights W ∗(A) on
the training data; then evaluate W ∗(A) on the validation
data of each party and aggregate the evaluation results. The
validation performance is used to select the best architecture.
Certainly, this is not efficient or scalable. We resort to a
differentiable search approach (Liu et al., 2018). The basic
idea of differentiable NAS is: set up an overparameterized
network that combines many different types of operations;
each operation is associated with an architecture variable
(AV) indicating how important the operation is; optimize
these AVs together with the weight parameters in the opera-
tions to achieve the best performance on the validation set;
operations with top-K largest AVs are selected to form the
final architecture. A neural architecture can be represented
as a directed acyclic graph (DAG) where the nodes represent
intermediate representations (e.g., feature maps in CNN)
and edges represent operations (e.g., convolution, pooling)
over nodes. Each node xi is calculated in the following way:
xi =

∑
j∈Pi

eji(xj), where Pi is a set containing the ances-
tor nodes of i. eji(·) denotes the operation associated with
the edge connecting j to i. In differentiable NAS, this DAG
is overparameterized: the operation eji(·) on each edge is a
weighted combination of all possible operations. Namely,
eji(x) =

∑M
m=1

exp(ajim)∑K
l=1 exp(ajil)

om(x), where om(·) is the
m-th operation (parameterized by a set of weights) and M
is the total number of operations. ajim is an architecture
variable representing how important om(·) is. In the end, the
prediction function of this neural network is continuous in
(1)A = {a} representing the architecture and (2) the weight
parameters W . The prediction loss function is end-to-end
differentiable w.r.t both A and W , which can be learned
by gradient descent. After learning, operations with top-K
largest architecture variables are retained to form the final
architecture. The problem in Eq.(2) can be approximately
solved by iteratively performing the following two steps:

• Update operation weights W :

W ←W − ξ
K∑
k=1

∇WL(D(tr)
k , A,W ) (3)

• Update architecture weights A:

A← A− η
K∑
k=1

∇AL(D(val)
k , A,W ′) (4)

where W ′ = W − ξ
∑K
j=1∇WL(D(tr)

j , A,W ) and
∇AL(D(val)

k , A,W ′) can be approximately computed as

Hk =∇AL(D(val)
k , A,W ′)

− ξ

2ε
(∇AL(D(tr)

k , A,W+)−∇AL(D(tr)
k , A,W−))

(5)

where W+ = W + ε∇W ′L(D(val)
k , A,W ′),

and W− = W − ε∇W ′L(D(val)
k , A,W ′).

Algorithm 1 Execution semantics in each iteration of the
DP-FNAS algorithm

for each party k do
Take a Poisson subsample It ⊆ {1, ..., N (tr)

k } with
subsampling probability p
for i ∈ It do
g
(i)
t = ∇Wk

L
(
D

(tr)(i)
k , Ak,Wk

)
ḡ
(i)
t = g

(i)
t /max

{
1,
∥∥∥g(i)t ∥∥∥

2
/RG

}
(Gradient clipping)

end for
Gk = 1

|It|

(∑
i∈It ḡ

(i)
t +RG.Uk

)
(Gaussian mechanism)

end for

On the server side:
Update W ←W − ε

∑K
k=1Gk

Send W to each party

for each party k do
Update W

′

k ←W

Take a Poisson subsample It ⊆ {1, ..., N (val)
k } with

subsampling probability p
for i ∈ It do
h
(i)
t = ∇AL

(
D

(val)(i)
k , A,W

)
h̄
(i)
t = h

(i)
t /max

{
1,
∥∥∥h(i)t ∥∥∥

2
/RH

}
(Gradient clipping)

end for
Hk = 1

|It|

(∑
i∈It h̄

(i)
t +RH .Vk

)
(Gaussian mechanism)

end for

On the server side:
Update A← A− η

∑K
k=1Hk

Send A to each party

for each party k do
Update Ak ← A
Update Wk ←W

′

k

end for

The server holds the global version of A and W . Each
party k has a local copy: Ak and Wk, and also holds
an auxiliary variable W ′k. FNAS iteratively performs
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the following steps until convergence. (1) Each party
uses Ak, Wk, and D(tr)

k to calculate ∇Wk
L(D(tr)

k , Ak,Wk),
and sends it to the server; (2) The server aggregates
{∇Wk

L(D(tr)
k , Ak,Wk)}Kk=1 received from different par-

ties, performs a gradient descent update of the global W :
W ← W − ξ

∑K
k=1∇Wk

L(D(tr)
k , Ak,Wk), and sends the

updated global W to each party which replaces its W ′k with
W ; (3) Each party calculates the gradient Hk in Eq.(5) and
sends it to the server; (4) The server aggregates {Hk}Kk=1 re-
ceived from different parties, updatesA← A−η

∑K
k=1Hk,

and sends the updated A to each party; (4) Each party re-
places Ak with A and replaces Wk with W ′k.
In federated NAS, while the sensitive data of each party can
be protected to some extent by avoiding sharing the data
with other parties, there is still a significant risk of leaking
privacy due to the sharing of intermediate sufficient statis-
tics (e.g., gradients) among parties. It has been shown in
several works that the intermediate sufficient statistics can
reveal private information if leveraged cleverly (Bhowmick
et al., 2018; Carlini et al., 2018; Fredrikson et al., 2015).
To address this problem, we study differentially-private
(DP) FNAS, which uses DP techniques (Dwork et al., 2006;
Dwork, 2008) to achieve a stronger preservation of privacy.
A DP algorithm (with a parameter α measuring the strength
of privacy protection) guarantees that the log-likelihood
ratio of the outputs of the algorithm under two databases
differing in a single individual’s data is smaller than α. That
means, regardless of whether the individual is present in the
data, an adversary’s inferences about this individual will be
similar if α is small enough. Therefore, the privacy of this
individual can be strongly protected.

Several works have shown that adding random noise to
the gradient can achieve differential privacy (Rajkumar &
Agarwal, 2012; Song et al., 2013; Agarwal et al., 2018). In
this work, we follow the same strategy. For each worker,
the gradient updates of A and W are added with random
Gaussian noise before sent to the server:

Gk = ∇Wk
L(D(tr)

k , Ak,Wk) + Uk (6)

Hk =∇AL(D(val)
k , A,W ′)− ξ

2ε
(∇AL(D(tr)

k , A,W+)

−∇AL(D(tr)
k , A,W−)) + Vk (7)

where the elements of U and V are drawn randomly from
univariate Gaussian distributions with zero mean and a vari-
ance of σ2

k and γ2k respectively. Algorithm 1 shows the
execution workflow in one iteration of the differentially-
private federated NAS (DP-FNAS) algorithm. Per-sample
gradient clipping is used with hyperparameters RG and RH .

3. Theoretical Analysis
In this section, we provide theoretical analysis on the differ-
ential privacy (DP) guarantees of the proposed DP-FNAS

algorithm. We consider a recently proposed privacy defini-
tion, named f -DP (Dong et al., 2019) owing to its tractable
and lossless handling of privacy primitives like composition,
subsampling, etc. and superior accuracy results than (ε, δ)-
DP (Dong et al., 2019; Bu et al., 2019). f -DP is a relaxation
of (ε, δ)-DP recently proposed by (Dong et al., 2019). This
new privacy definition preserves the hypothesis testing in-
terpretation of differential privacy. Broadly, composition is
concerned with a sequence of analysis on the same dataset
where each analysis is informed by the exploration of prior
analysis in the previous iteration. Our proposed gradient-
based FNAS algorithm involves two instances of private
gradient sharing or Gaussian mechanism (Dwork & Roth,
2014), for optimizing A and W , between the parties and
the central server. One of the two mechanisms composes
over the other in one iteration, hence they keep composing
onto each other over further iterations of the algorithm. We
provide a decoupling analysis of these two mechanisms over
the iterations, by leveraging the fact that the datasets used
for the two mechanisms are disjoint (one on training set,
the other on validation set). We get the results in terms
of Gaussian differential privacy (GDP) (the focal point of
the f -DP guarantee family due to a central limit theorem).
GDP ensure privacy in a very interpretable manner. It states
that the privacy guarantee of the composition of private al-
gorithms are approximately equivalent to telling apart two
shifted normal distributions.

In our proposed FNAS algorithm, mini-batch subsampling is
used for improving computational efficiency. A side benefit
of subsampling is that it naturally offers tighter privacy
bounds since an individual not contained in a subsampled
mini-batch enjoys perfect privacy. The f -DP leverages this
fact efficiently for amplifying privacy.

3.1. Preliminaries
An algorithm is considered private if the adversary finds it
hard to determine the presence or absence of any individual
in two neighbouring datasets. Two datasets, say S and S′,
are said to be neighbors if one can be derived by discarding
an individual from the other. The adversary seeks to tell
apart the two probability distributionsM(S) andM(S′),
where M is the randomized mechanism, using a single
draw. The adversary tests two simple hypotheses: H0 :
the true dataset is S, versus H1 : the true dataset is S′.
Hence, privacy is well guaranteed if this hypothesis testing
problem is hard. Following this intuition, the definition
of (ε, δ)-DP (Dwork, 2008) essentially uses the worst-case
likelihood ratio of the distributionsM(S) andM(S′) to
measure the hardness of testing the two simple hypotheses.
f -DP utilizes a more informed measure of this hardness
by directly operating with the tradeoff function associated
with hypothesis testing. Specifically, f -DP uses the trade-
off between type I error and type II error in place of a
few privacy parameters in (ε, δ)-DP or other divergence-
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based DP definitions. With this context, we formalize some
definitions as stated in (Dong et al., 2019) for our proof.

Definition 3.1 (Trade-off Function) Let P and Q denote
the distributions ofM(S) andM(S′), respectively, and let
φ be any (possibly randomized) rejection rule for testing
H0 : P against H1 : Q. With these in place, the trade-off
function of P and Q is defined as:

T (P,Q) : [0, 1] 7→ [0, 1]

α 7→ inf
φ
{1− EQ[φ] : EP [φ] 6 α}

Definition 3.2 Let Gµ := T (N (0, 1),N (µ, 1)) for µ > 0.
A (randomized) algorithmM is µ-Gaussian differentially
private (GDP) if T (M(S),M (S′)) > Gµ, for all neigh-
boring datasets S and S′.

That is, µ-GDP says that determining whether any individual
is in the dataset is at least as hard as telling apart two normal
distributions N (0, 1) and N (µ, 1) based on one draw.

3.2. Privacy analysis
The major results are summarized in the following theorem.

Theorem 3.1 Consider a gradient-based Federated NAS
algorithm (Algorithm 1), which subsamples minibatches
(using Poisson subsampling), clips gradients, and perturbs
gradients for both weight parameters W and architecture
variables A using Gaussian mechanismMt at each itera-
tion. Assuming that D(tr)

k and D(val)
k are disjoint for each

party k, the algorithm achieves

B

N
(tr)
k

√
T
(
e1/σ2−1

)
-GDP

for mechanism compositionMGk

t=1−T (D
(tr)
k ) and

B

N
(val)
k

√
T
(
e1/τ2−1

)
-GDP

for mechanism compositionMHk

t=1−T (D
(val)
k )

where GDP refers to Gaussian Differential Privacy, σ2 and
τ2 represent the variance of the added Gaussian noises Uk
and Vk respectively, T is the number of iterations, B is the
mini-batch size,N (tr)

k andN (val)
k are the number of training

and validation examples owned by party k, respectively.

Remarks

• Intuitively, these privacy bounds reveal that the algorithm
gives good privacy guarantees if B

√
T/Nk is small, and

σ or τ are not too small.

• Since GDP is achieved through central limit theorem due
to composition of distributionsMt(D) over T iterations,
it is expected that T is large enough. This requirement

is usually satisfied with general settings of DP-FNAS
training procedure.

• The utilization of subsampling in the proof adds to the
privacy improvement, and is also closer to actual experi-
mental settings. This tighter guarantee allows for some
space to reduce the variance of the added Gaussian noise,
which decreases privacy (as noted in the first remark),
but increases the model convergence accuracy (since the
noise’ variance is a major factor sacrificing accuracy in
private optimization algorithms).

Please refer to the appendix for the detailed proof.

4. Experiments
In this section, we present experimental results on the
CIFAR-10 dataset. The task is image classification. Our
goal is to search a highly-performing neural architecture
for this task. Following (Liu et al., 2018), we first search
an architecture cell by maximizing the validation perfor-
mance. Given the searched cell, we perform augmentation:
the cell is used to compose a larger architecture, which is
then trained from scratch and measured on the test set.

4.1. Experimental Setup
The search space is the same as that in (Liu et al., 2018).
The candidate operations include: 3× 3 and 5× 5 separable
convolutions, 3×3 and 5×5 dilated separable convolutions,
3×3 max pooling, 3×3 average pooling, identity, and zero.
The network is a stack of multiple cells, each consisting of
7 nodes. The CIFAR-10 dataset has 60000 images from 10
classes, 50000 for training and 10000 for testing. During
architecture search, we used 25000 images of the training set
for validation. During augmentation, all 50000 images in the
training set were used for training the composed architecture.
The variance of noises added to gradient updates of A and
W were both set to 1. The hyperparameters RG and RH in
gradient clipping were set to 0.01 and 0.1 respectively. We
experiment with the following settings:

• NAS with a single party. The vanilla NAS is performed
by a single party which has access to all training and
validation data.

• Federated NAS with N parties, where N = 2, 4, 8. The
training data is randomly split into N partitions, each
held by one party. So is the validation data. The final
architecture is evaluated on the test dataset accessible by
the server. The gradients calculated by each party are not
obfuscated with random noise.

• Differentially-private FNAS with N parties, where N =
2, 4, 8. The gradients calculated by each party are ob-
fuscated with random noise. The rest of settings are the
same as those in FNAS.
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Table 1. Test error under different settings. Note that the search
cost is only about architecture search, not including augmentation
which trains the composed architecture from scratch.

#parties Test error Search cost
(%) (GPU days)

Vanilla NAS 1 2.8 ± 0.10 1.25

FNAS
2 2.9 ± 0.15 1.21
4 3.2 ± 0.34 0.67
8 3.3 ± 0.40 0.55

DP-FNAS

1 3.0 ± 0.10 1.39
2 3.0 ± 0.12 1.28
4 3.1 ± 0.13 0.93
8 3.4 ± 0.38 0.59

#Parameters and #Operations for each case are 3.36M
and 4 respectively.

4.2. Results

Table 1 shows the test error and search cost (measured by
GPU days) under different settings. From this table, we
make the following observations. First, the performance
of DP-FNAS with different numbers of parties is on par
with that of single-party vanilla NAS. This demonstrates
that DP-FNAS is able to search highly-performing neural
architectures that are as good as those searched by a sin-
gle machine while preserving individual differential privacy.
Second, in DP-FNAS, as the number of parties increases,
the performance drops slightly. This is probably because:
Gaussian noise is added to the gradient of each party; more
parties result in more added noise, which hurts the conver-
gence of the algorithm. Third, under the same number of
parties, DP-FNAS performs slightly worse than FNAS, due
to noise addition to gradients. However, the difference is
very small. This shows that DP-FNAS is able to provide
stronger privacy protection without substantially degrading
performance. Fourth, in FNAS, as the number of parties
increases, the performance degrades slightly. The possible
reason is: due to decrease in data held per party, gradients
calculated get biased towards its party’s small dataset, hence
degrading the model updates. Fifth, as the number of par-
ties increases, the search cost decreases as more parties can
contribute more computing resources. However, the rate of
cost reduction is not linear in the number of parties due to
communication latency. Sixth, under the same number of
parties, DP-FNAS has slightly larger search cost than FNAS.
This is because adding noise renders the gradient updates
less accurate, which slows down convergence. Seventh, the
number of parameters and operations remain the same under
each setting. This indicates that DP-FNAS and FNAS do not
substantially alter the architectures, compared with those
searched by a single machine.

5. Related Works
Federated NAS There are several works independently
conducted in parallel to ours on the topic of federated NAS.
In (He et al., 2020), each client locally performs neural ar-
chitecture search. The architecture variables of different
clients are synchronized to their average periodically. This
approach has no convergence guarantees. In our work, dif-
ferent parties collaboratively search for a global architecture
by exchanging gradients in each iteration, where the con-
vergence is naturally guaranteed. In (Zhu & Jin, 2020),
a federated algorithm is proposed to search neural archi-
tectures based on the evolutionary algorithm (EA), which
is computationally heavy. In our work, a gradient-based
search algorithm is used, which has lower computational
cost. In (Xu et al., 2020), the search algorithm is based on
NetAdapt (Yang et al., 2018), which adapts a pretrained
model to a new hardware platform, where the performance
of the searched architecture is limited to that of the pre-
trained model. In our work, the search is performed in
a large search space rather than constrained by a human-
designed architecture.

Federated Learning Federated learning (FL) is a decen-
tralized learning paradigm which enables multiple parties
to collaboratively train a shared model by leveraging data
from different parties while preserving privacy. Please re-
fer to (Li et al., 2019) for an extensive review. One key
issue in FL is how to synchronize the different parameter
copies among parties. One common approach is periodi-
cally setting different copies to their average (McMahan
et al., 2016), which however has no convergence guaran-
tees. Client-server-based architectures guarantee conver-
gence by exchanging gradients and models between servers
and clients.

6. Conclusions and Future Works
In this paper, we study differentially private federated neu-
ral architecture search (DP-FNAS), where multiple parties
collaboratively search for a highly-performing neural archi-
tecture by leveraging the data from different parties, with
strong privacy guarantees. DP-FNAS performs distributed
gradient-based optimization of architecture variables and
weight parameters using a parameter server architecture.
Gradient updates are obfuscated with random Gaussian
noise to achieve differential privacy. We provide theoretical
guarantees of DP-FNAS on privacy preservation. Experi-
ments on varying numbers of parties demonstrate that our
algorithm can search neural architectures which are as good
as those searched on a single machine while preserving
privacy of individual parties. For future works, we aim to
reduce the communication cost in DP-FNAS, by developing
methods such as gradient compression, periodic updates,
diverse example selection, etc.
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A. Proof of Theorem 3.1
Algorithm 1 has two instances of gradient sharing steps,
one for optimizing the weight parameters W , and the other
for the architecture parameters A. The gradient for W is
calculated using training data, while that for A is calculated
using validation data. These two steps in each iteration
include two randomized mechanisms, namelyMG(D(tr))
and MH(D(val)) which are perturbed gradients w.r.t. to
W and A respectively. We leverage the fact that the two
mechanisms have query functions which are querying on
two different datasets with disjoint data points, i.e., the
training set will not contain information about individuals
which are part of the validation set and vice versa. This
limits the association of privacy risk for any individual with
only one of the two datasets. Also we know that composition
is concerned with a sequence of analysis on the same dataset
where each analysis is informed by the exploration of prior
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analysis. Hence, composition of these two mechanisms over
each iteration will not affect the privacy bounds of each
other. In that sense, the compositions 8 and 9 decouple as
10 and 11 respectively for any party k as shown:

Gk :MGk
t (D

(tr)
k ,W [MGk

t−1(D
(tr)
k )], A[MHk

t−1(D
(val)
k )])

(8)

Hk :MHk
t (D

(val)
k ,W [MGk

t (D
(tr)
k )], A[MHk

t−1(D
(val)
k )])

(9)

Gk :MGk
t (D

(tr)
k ,W [MGk

t−1(D
(tr)
k )]) (10)

Hk :MHk
t (D

(val)
k , A[MHk

t−1(D
(val)
k )]) (11)

whereMGk
t represents a randomized mechanism for gra-

dient w.r.t. W at the tth iteration for a party k. It takes
previous mechanisms (MGk

t−1 via W andMHk
t−1 via A) as

inputs. Similarly, MHk
t represents a randomized mecha-

nism for gradient w.r.t. A at the tth iteration for a party k.
The above expression is to suggest the recursive phenomena
as also evident from Algorithm 1. With these in place, we
can argue that the two mechanisms are composing indepen-
dently along the direction of the iterations for each party.
(Note that we ignored the presence of validation set (D(val)

k )
in the same way we ignore that of datasets from other parties
(D(tr)

l 6=k ) since in both scenarios the datasets are presumably

disjoint to D(tr)
k .)

Note that adding or removing one individual would change
the value of

∑
i∈It ḡ

(i)
t or

∑
i∈It h̄

(i)
t (from Algorithm 1)

by at most RG or RH (clipping constants) in the l2 norm
due to the clipping operation. Hence the query function
for mechanisms MG(D(tr)) and MH(D(val)) has sensi-
tivity RG and RH respectively. The major role played
by clipping constants reflects in the accuracy achieved
by the algorithm. We also subsample the dataset for
computing gradients at both instances. We perform Pois-
son subsampling by choosing a data point with probabil-
ity p for making a place in the mini-batch used for gra-
dient computation. This gives us the subsampled ran-
domized mechanismsMGk

t (D
(tr)
k ) ◦ Samplep(D(tr)

k ) and
MHk

t (D
(val)
k )◦Samplep(D(val)

k ) similar to the one in (Bu
et al., 2019). The above analysis has translated our problem
into two instances of the problem in (Bu et al., 2019). This
allows us to leverage the results from (Bu et al., 2019) for
each of these compositions independently, which completes
the proof of Theorem 3.1.

B. Accuracy-Privacy Tradeoff Analysis
Table 2 shows how the validation error of DP-FNAS with
4 parties varies with the variance of noise. As can be seen,
large variance results in larger validation error. This is be-
cause noises with larger variance tend to have larger magni-

Table 2. Validation error achieved by DP-FNAS under different
variance of noises. The number of parties is 4.

Variance Validation
of Noise error (%)

0.5 14.0 ± 0.32
1.0 14.0 ± 0.32
2.0 14.4 ± 0.43
5.0 15.1 ± 0.85
8.0 16.4 ± 1.01
10.0 19.2 ± 3.27

tude, which makes the gradient updates less accurate. How-
ever, a larger variance implies a stronger level of differential
privacy. By tuning the variance of noise, we can explore a
spectrum of tradeoffs between strength of privacy protection
and classification accuracy.


